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Indirect interaction of colloidal particles adsorbed on smectic films

Peter Schiller
Institut für Biochemie und Biophysik, Philosophenweg 12, 07743 Jena, Germany

~Received 23 September 1999!

Colloidal particles like peptides and proteins adsorbed on a stack of lipid bilayers cause elastic deformations
which disturb the smectic order. Two adsorbed particles attract each other due to the superposition of their
deformation fields. The effective pair potential attributed to this substrate-mediated force decays exponentially
with the particle distance. The range of this potential coincides with the decay length of elastic deformations,
and is found to be proportional to the square root of the stack thickness. If the stack is sufficiently thick, the
substrate-mediated interaction is estimated to be strong enough to overcome the entropic barrier and enforce
aggregation or even crystallization of the adsorbate.

PACS number~s!: 68.18.1p, 68.10.Et, 82.70.Dd
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I. INTRODUCTION

A cell membrane is a lipid bilayer which contains a va
ety of polymeric inclusions such as integral proteins@1#. In
addition to the embedded transmembrane particles, there
also amphipathic peptides and proteins adsorbed on
membrane surface. The lateral ordering of these molec
can influence their biological activity. There exist substan
interactions between protein molecules embedded in biol
cal membranes. In protein-rich systems, the interplay of v
ous intermolecular forces can result in phase separation
well as in two-dimensional crystallization@2#. A practical
situation in which these interactions are important is
crystallization of membrane proteins for electron microsco
and x-ray diffraction studies@3#.

Theoretical @4# and experimental investigations@5# re-
vealed that embedded proteins interact indirectly via de
mations of the lipid bilayer. Each inclusion is the source
elastic membrane deformations, which extend over distan
substantially larger than the cross section diameter of a l
molecule. Superposition of the deformation fields produ
indirect forces between the macromolecules. The strengt
these forces depends on the elastic properties of the
bilayer. Elastic deformations have also been suggeste
give rise to attractive forces between parallel DNA m
ecules adsorbed on cationic lipid bilayers@6,7#. Furthermore,
indirect forces between inclusions, which are incorpora
into the bulk of a smectic liquid crystal, should also occ
Comprehensive theoretical studies of Turner and co-work
@8–11# dealt with the interaction between inclusions residi
in the interior of lamellar phases consisting of regula
spaced lipid bilayers or diblock copolymers. The effecti
pair potential for two inclusions was found to be attracti
on average, and strongly anisotropic. Rather complicated
fective pair potentials result if higher order terms of a m
tipole expansion for the interaction potential are taken i
account@10#.

Electron microscopy@12#, scanning tunneling@13#, and
atomic force microscopy@14,6# offer excellent possibilities
to study lipid bilayers and multilayers. The familia
Langmuir-Blodgett technology is suitable to transfer sta
with a few or even several dozen lipid layers to a plane so
support. We suppose that proteins or peptides are adso
PRE 621063-651X/2000/62~1!/918~9!/$15.00
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on the lipid-water interface of such films. Lipid-mediate
interactions are expected to be dependent on the numbe
layers in the smectic film. Changing the number of bilaye
in Langmuir-Blodgett films could be a possible means
modify the order of adsorbates consisting of colloidal m
ecules.

In this paper we investigate how the stack thickness in
ences the indirect interaction between the colloidal partic
In addition to stacks of a moderate thickness, very thin fil
only consisting of one bilayer resting on a solid support
also considered. The results for very thin films and sta
differ in the interaction range. It will be shown that the ran
of the membrane-mediated attraction force grows with
increasing number of bilayers in a stack. The effective int
action radius is found to be proportional to the square roo
the stack thickness. In sufficiently thick films the interacti
range could be large enough to overcome the entropic ba
and enforce aggregation or even crystallization of the ad
bate. Provided that the distances between the particles
much larger than their diameters, the theoretical approac
also applicable if the upper bilayer of the Langmuir-Blodg
film contains membrane-spanning proteins~Fig. 1!.

II. ELASTIC DEFORMATIONS OF A VERY THIN
SUPPORTED FILM

Let us consider a large colloidal particle adsorbed on
surface of a very thin soft film which rests on a solid suppo
The film thicknessd0 is assumed to be comparable to
even substantially smaller than the cross-sectional diam

FIG. 1. Colloidal molecules adsorbed on a stack of bilay
produce a disturbance of the flat interface profile. Integral prote
spanning the upper bilayer have the same effect.
918 ©2000 The American Physical Society
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PRE 62 919INDIRECT INTERACTION OF COLLOIDAL PARTICLES . . .
of the adsorbed particle. Forces which attach the colloid
the substrate are the source of elastic deformations acco
nied by the change of the film surface profile. Deviationsu
of the film thickness from the unperturbed flat state are
pressed as a function of Cartesian coordinatesX5(x,y),
which are introduced in such a way that a point of the fi
surface is defined by the position vector@x,y,z5d0
1u(x,y)#. The free elastic energyF of a thin film should be
a functional of the surface profileu(X). If film deformations
are small@ uu(X)u!d0#, a functional Taylor expansion abou
the flat configuration@u(X)50# is justified. Neglecting
higher order terms, we obtain

F@u#5F@u50#1E Cu~X!u~X!d2X

1 1
2 E E Cuu~ uX2X̄u!u~X!u~X̄!d2X d2X̄1¯ ,

~1!

where the notation for functional derivatives,

Cu~X!5S dF

du~X!
D

0

and

Cuu~ uX2X̄u!5S d2F

du~X!du~X̄!
D

0

,

is used. In the force-free state the flat configurationu(X)
50 is stable, and thus the first derivativeCu(X) must be
equal to zero. If the film is subjected to an external lo
Cu(X)[2 f (X) is the stress normal to the film surface. F
deformations with small wave numbers,q!2p/d0 , a gradi-
ent expansion is allowed. SubstitutingX̄ with S5X̄2X, and
expanding aboutS50, the second integral in Eq.~1! is trans-
formed into

E E Cuu~ uSu!u~X!u~X1S!d2X d2X̄

5E u~X!@B8u~X!2s8¹2u~X!1K8¹4u~X!#d2X,

~2!

where gradient terms with higher order than four are
glected, andD5¹25]x

21]y
2 denotes the Laplace operator

two dimensions. The coefficients in expansion~2! are for-
mally defined as

B85E
0

`

Cuu~s!2ps ds,

s85 2
1

4 E
0

`

s2Cuu~s!2ps ds

and
o
pa-

-

,

-

K852
1

64 E0

`

s4Cuu~s!2ps ds,

with s5uSu5AS1
21S2

2. Performing several partial integra
tions, the elastic free energy~1! can be cast into the form

F@u#5 1
2 E @B8„u~X!…21s8„¹u~X!…21K8„Du~X!…2

22 f ~X!u~X!#d2X. ~3!

Equation ~3! has the same mathematical structure a
well-known free energy expression used in the elastic c
tinuum theory of lipid membranes@15#. B8 is the
compression-expansion modulus,s8 the surface tension, an
K8 the bending modulus. The stability of the flat film geom
etry in the force-free state requiresB8.0, s8>0 and K8
.0. The corresponding Eulerian equation

K8DDu~X!2s8Du~X!1B8u~X!5 f ~X! ~4!

is a condition necessary for a minimum of the free energy
is useful to evaluate the Green’s function by solving t
equation

K8DDG~ uX2X̄u!2s8DG~ uX2X̄u!1B8G~ uX2X̄u!

5d~X2X̄!, ~5!

whered(X2X̄) is the Diracd function.G(uX2X̄u) describes
the film response to a force applied at the pointX̄. Then the
interface profile for any force distribution is obtained fro
the convolution integral

u~X!5E G~ uX2X̄u! f ~X̄!d2X̄. ~6!

The Green’s function is evaluated by applying the tw
dimensional Fourier transform. Inserting

G~x2 x̄,y2 ȳ!5
1

~2p!2 E E G̃~qx ,qy!exp@ iqx~x2 x̄!

1 iqy~y2 ȳ!#dqxdqy ,

and the corresponding ansatz for the Diracd function into
Eq. ~5!, we arrive at @K8q41s8q21B8#G̃(q)51, where

q5Aqx
21qy

2. If s8.0 the termKq4 can be neglected whe

large distances or small wave numbersq!As8/K are con-
sidered, and thus the simpler equation@s8q21B#G̃I(q)51
results. The inverse Fourier transform ofG̃I(q) can be writ-
ten as a Hankel transform, namely,

GI~R!5
1

2pB8
E

0

` J0~qR!q dq

11j I
2q2 , ~7!

where the notation R5A(x2 x̄)21(y2 ȳ)2 and j I

5As8/B8 is used, andJ0(qR) is the Bessel function of the
first kind. The formula 2J0(qR)5H0

(1)(qR)1H0
(2)(qR) con-

nects the Bessel function to Hankel functions of first a



io

te
le

s

ed
n
q.

od

e

ol-
tion

lts
of

st-

les
n be

fi-
ng

920 PRE 62PETER SCHILLER
second orders, and taking into account the relat
H0

(2)(qR)52H0
(1)(2qR), which is valid for real values of

the argumentqR, we obtain

J0~qR!5
H0

~1!~qR!2H0
~1!~2qR!

2
. ~8!

Inserting Eq.~8! into Eq. ~7! yields the integral

GI
S~R!5

1

4pB8
E

2`

` H0
~1!~qR!q dq

11j I
2q2 , ~9!

which can be replaced by the sum of the residues attribu
to the poles located in the upper half of the plane of comp
numbersq5Req1i Im q. The denominator in integral~9!
has the zeroq5 i j I

21 located in the upper half-plane. Thu
we obtain the result

GI
S~R!5

2p i

4pB8

H0
~1!~ iR/j I !

2j I
2 ,

which is simplified to

GI
S~R!5

1

2pB8j I
2 K0S R

j I
D ~10!

by using the relation1
2 p iH 0

(1)( iR/j I)5K0(R/j I), whereK0

is the modified Bessel function@16#. If R is comparable to or
larger thanj I the formula

GI
S~R!5

1

2A2pB8j I
2 S j I

RD 1/2

expS 2
R

j I
D ~11!

is applicable. It is often assumed that the surface tensions8
of lipid bilayers vanishes. The Green’s function is modifi
if the interface tensions8 is very small or zero, because i
this case the termKq4 must be taken into account. Then E
~9! is replaced by

GII
S ~R!5

1

2B8
E

2`

` H0
~1!~qR!q dq

11j II
4 q4 ,

with j II 5(K8/B8)1/4, and again applying the residue meth
we arrive at

GII
S ~R!5

2p i

4pB8 F i

4j II
2 H0

~1!S ibR

j II
D2

i

4j II
2 H0

~1!S ib* R

j II
D G ,

whereb5(11 i )/&, andb* is the complex conjugate ofb.
This expression is transformed into

GII
S ~R!52

1

2pB8j II
2 Im K0S bR

j II
D . ~12!

Equation~12! was already derived by Boulbitch@19# for de-
scribing the deflection of a biological cell membrane und
application of a local force. If the distanceR is not too small
compared toj II the formula
n

d
x

r

GII
S ~R!5

1

4ApB8j II
2 S j II

R D 1/2

hS R

j II&
D expS 2

R

j II&
D
~13!

is applicable, where the trigonometric functionh is defined
by

h~x!5~A121/& !cos~x!1~A111/& !sin~x!. ~14!

Finally, we consider the case where a long rodlike m
ecule is adsorbed on the film surface. The Green’s func
for a long rod with an orientation parallel to they axis is
obtained from the integral

GI
R~R!5

1

2pB8
E

2`

` exp~ iqxx!dqx

11j I
2qx

2 ,

which leads to the exponential function

GI
R~ uxu!5

1

2B8j I
expS 2

uxu
j I

D . ~15!

Similarly, in the case of a negligible surface tensions8
!B8j I

2, we obtain

GII
R~ uxu!5

1

2&B8j II
FcosS uxu

j II&
D 1sinS uxu

j II&
D G

3expS 2
uxu

j II&
D . ~16!

Obviously, the validity of Eqs.~10!, ~12!, ~15!, and ~16! is
not restricted to smectic bilayer films. Since expansions~1!
and ~2! are applicable to any thin soft films, the resu
should also be valid for other materials, e.g., thin films
soft solids, if small wave number deformations (q
!2p/d0) are considered.

III. COLLOIDAL PARTICLES ADSORBED
ON A STACK OF BILAYERS

A. Deformation of a bilayer stack

Let us consider a stack of smectic layers or bilayers re
ing on a solid surface identical to the plane (x,y,z52d) of
a Cartesian coordinate system. Now the shiftu of smectic
bilayers depends on the additional coordinatez. Colloidal
particles adsorbed on the surfacez50 exert a force which is
the source of elastic deformations~Fig. 1!. The loadf (x,y)
is nonzero only in the small regions where colloidal partic
touch the surface. The elastic free energy of the stack ca
written as@20#

F5
1

2 EV
d3XFBS ]u

]zD 2

1K~¹2u!2G1
1

2 EA
d2X s~¹u!2

2E
A
d2X f u, ~17!

whereV is the volume,A the surface area, and the coef
cients B, K, and s are the compression modulus, bendi
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PRE 62 921INDIRECT INTERACTION OF COLLOIDAL PARTICLES . . .
modulus, and surface tension, respectively. We assume
the thicknessd of the stack is small compared to its later
extension. Variation of the free energy@Eq. ~17!# leads
straightforwardly to the Eulerian equation

B
]2u

]z2 5KD2u, ~18!

with boundary conditions for the adsorption planez50 and
the lower planez52d, where the multilayered stack res
on the solid support:

BS ]u

]zD
z50

2sDu~z50!5 f ~x,y!, ~19!

u~z52d!50. ~20!

Performing some partial integrations and taking Eq.~20! into
account, the free energy~17! is transformed into

F52
1

2 EV
d3X uFB

]2u

]z22KD2uG1
1

2 EA
d2X uFBS ]u

]zD
z50

2sDu~z50!G2E
A
d2X f u,

and using Eqs.~18! and~19!, we arrive at the simple expres
sion

F52 1
2 E d2X f u. ~21!

To characterize the elastic response it is sufficient to so
the Eulerian equation~18! for the Green’s functionu5G(x
2 x̄,y2 ȳ,z), with boundary conditions

BS ]G

]z D
z50

2sDG~z50!5d~x2 x̄!d~y2 ȳ!,

G~x2 x̄,y2 ȳ,z52d!50.

Inserting the Fourier transform

G~x2 x̄,y2 ȳ,z!5
1

~2p!2 E E Gq~z!exp@ iqx~x2 x̄!

1 iqy~y2 ȳ!#dqxdqy

into Eq. ~18! yields

B
d2Gq~z!

dz2 2Kq4Gq~z!50, ~22!

whereq25(qx
21qy

2). The boundary conditions for the func
tion Gq(z) are

BS dGq~z!

dz D
z50

1sq2Gq~0!51 and Gq~z52d!50

Obviously, the solution of Eq.~22!,
at

e

Gq~z!5
sinh@q2j~d1z!#

q2@jB cosh~q2jd!1s sinh~q2jd!#
,

with j5AK/B, satisfies the required boundary conditions.
the conditions/(jB)!1 holds, the surface tension is no
important. Then the Green’s function

G~R!52
1

p2Bj (
n50

`
1

n1 1
2

Im K0S bA~n1 1
2 !p

Ajd
RD

~23!

is obtained for z50 ~see Appendix A!, where R
5A(x2 x̄)21(y2 ȳ)2 andb5(11 i )/&. For R.Ajd only
the first term of sum~23! has a substantial contributio
~compare Fig. 2!. Taking into account the asymptotic beha
ior of the Bessel functionK0 @16# for R→`, one obtains the
formula

G~r !5
~2p!1/4

p2Bj
hS 1

2
Apr D S 1

r D 1/2

expS 2
1

2
Apr D , ~24!

where the scaled argumentr 5R/Ajd is used, and the func
tion h is defined by Eq.~14!. The decay lengthAjd for
perturbations of the flat surface profile increases with
creasing film thicknessd.

B. Substrate-mediated interaction

The Green’s function allows one to determine an effect
interaction potential for substrate-mediated forces betw
adsorbed molecules. Combining the relation

u~X!5E G~ uX2X̄u! f ~X̄!d2X̄

with Eq. ~21! yields the simple formula

F52 1
2 E E G~ uX2X̄u! f ~X! f ~X̄!d2X d2X̄, ~25!

FIG. 2. Plot of the substrate-mediated pair potential~in dimen-
sionless units! cU with c5Bj/P2, vs the reduced distancer
5R/Ajd. The solid line results from the complete Green’s functi
~23!, while the dashed line is obtained from the approximate f
mula ~24!.
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922 PRE 62PETER SCHILLER
which is also applicable to very thin fims considered in S
III A. Let us consider two colloidal particles with coordinate
X1 and X2 . Both particles produce a stress normal to t
surface, which is different from zero in the regions where
molecules touch the interface, say within the regionsuX
2X1u,a1 and uX2X2u,a2 . Thus we can write f (X)
5P1(uX2X1u)1P2(uX2X2u), where the functionsPi(uXu)
differ from zero only within small circular regionsuXu,ai
( i 51 and 2!. Inserting this expression forf (X) into Eq.~25!
leads to

F5 1
2 U~X1 ,X̄1!1 1

2 U~X2 ,X̄2!1U~X1 ,X̄2!, ~26!

where

U~Xi ,X̄j !52E E G~ uXi2X̄j u!Pi~ uXi u!Pj~ uX̄j u!d2Xid
2X̄j

~27!

( i , j 51,2). We consider the case of a sufficiently large d
tanceuX̄22X1u@a1 ,a2 between the adsorbed molecules a
fix their position vectorsX1 and X̄2 . Then the function
G„(Xi1DXi)2(X̄j1DX̄j )… of the argumentsDXi and DX̄j
( i , j 51,2) does not noticeably vary ifuDX1u<a1 and
uDX̄2u<a2 . The self-energies12 U(X1 ,X̄1) and 1

2 U(X2 ,X̄2)
in Eq. ~26! can be omitted when the interaction energy
adsorbed molecules is evaluated. Using the nota
U(X1 ,X̄2)[U(R) with R5uX̄22X1u the effective interac-
tion potential

U~R!52P1P2G~R!, ~28!

with

Pi5E
0

ai
Pi~s!2ps ds ~ i 51,2! ~29!

is obtained from Eq.~27!. Equation~28! can be considered
as the leading term of a multipole expansion analogous
corresponding expansion for inclusions localized in the b
@10#. This term accurately describes the interaction ifR@ai
~i 51 and 2!, and if the adsorption forcePi is substantially
larger than correction terms associated with moments of
force distributionPi(s). The second condition can be writte
as

uPi u~Ajd!n@U E
0

ai
snPi~s!2ps dsU ~n52,4,6, . . . !

for a substrate consisting of smectic layers@21#.
In a similar way the interaction energy for two parall

rods with lengthL is found by introducing coupling con
stantsP̂i ( i 51 and 2!, which are equal to the forces per un
rod length normal to the interface. It is supposed that
mutual distanceuxu between parallel rods is small compar
to the rod lengthL. In this case the potentialÛ(uxu)
52 P̂1P̂2G(uxu) is defined as the interaction energy per u
rod length, and thus the total interaction energy of two p
allel rods with lengthL is given byU(uxu)5LÛ(uxu).
.
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Finally, the case of an infinitely thick smectic stac
which fills the half-space2`,z<0, is discussed. The
Green’s function for rodsG(ux2 x̄u)5 1

2 ux2 x̄u/(jB1s),
evaluated in Appendix B, does not decay for large distan
(ux2 x̄u→`). The same problem arises for the correspon
ing Green’s function attributed to a point force exerted to
surface of an infinitely thick stack. This behavior is not su
prising, since even thermodynamic fluctuations destroy
one-dimensional order of an infinitely extended lamel
phase@20#.

C. Statistics for an ensemble of adsorbed particles

We consider a two-dimensional system ofN hard particles
with interaction potential

W~X1,...,XN!5 (
1< i , j <N

w~ uXi2Xj u!,

where the pair potential w(uXi2Xj u)5whp(uXi2Xj u)
1U(uXi2Xj u) consists of a hard-particle contribution an
the attractive term defined by Eq.~28!. In the case of disklike
molecules, the hard-particle contribution is defined
whp(uXi2Xj u)5` for uXi2Xj u,2b and whp(uXi2Xj u)50
for uXi2Xj u.2b, whereb is the disk radius. van Kampe
@22# and Lebowitz and Penrose@23# proved that the pressur
P of a fluid with hard-particle repulsion and long-range a
tractive forces satisfies the van der Waals-like equation
state

P5Php1 1
2 ar2, ~30!

with

a5E
0

`

U~R!2pR dR,

wherePhp is the pressure of the hard-particle reference fl
with vanishing attractive interactions (r5N/A is the particle
density,k is the Boltzmann constant, andT is the tempera-
ture!. Combining the relationU(R)52P2G(R) and Eq.
~23!, the coefficienta is easily computed:

a52P2E
0

`

G~R!2pR dR52S P2

B Dd. ~31!

A different way to derive Eqs.~30! and ~31! is given in
Appendix C. Using an accurate equation of state for the h
core contributionPhp @24#, Eq. ~30! can be written as

Pa0

kT
5

c

~12c!22c2S d

D D , ~32!

where

D5S 2a0BkT

P2 D ~33!

is a characteristic stack thickness, and the dimensionless
sity c5Na0 /A is equal to the fraction of substrate area co
ered by adsorbed particles (a05pb2, the area of a disk!. The
equation of state~32! is related to the chemical potential
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TABLE I. Interaction potentials of circularly symmetric particles and long parallel rods for large dista
R.Ajd and uxu.Ajd. ~The rod lengthL is supposed to be much larger than the interaxial distanceuxu.!

Supported bilayer withsÞ0
globes

U~R!52
P1P2

A8pB8j I
2 S j I

RD 1/2

expS2 R

jI
D

parallel rods

U~uxu!52
P̂1P̂2L

2B8jI
expS2 uxu

jI
D

Supported bilayer withs50
globes

U~R!52
P1P2

4ApB8j II
2

hS R

j II&
D S j II

R D 1/2

expS2
R

jII&
D

parallel rods

U~uxu!52
P̂1P̂2L

2&B8jII
FcosS uxu

jII&
D1sinS uxu

jII&
DGexpS2

uxu

jII&
D

Stack of bilayers
globes

USr5
R

Ajd
D 52

~2p!1/4P1P2

p2Bj
hS 1

2
Apr D S 1

r D 1/2

expS2 1

2
Apr D

parallel rods

US r 15
uxu

Ajd
D 52

2P̂1P̂2L

p3/2B S d

j D 1/2FcosS12Apr 1D1sinS12Apr 1D GexpS2 1

2
Apr 1D
te
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-
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m5kT F ln
c

12c
1

~11c2c2!

~12c!2 22S d

D DcG ~34!

IV. DISCUSSION

The effective pair potentials resulting from the substra
mediated interaction for circularly symmetric particl
~‘‘globes’’ ! and parallel rods are summarized in Table
These results, based on the linear theory of elasticity,
restricted to the case of small film deformations. Furth
more, for very thick stacks the substrate-induced interac
is modified by thermal fluctuations, which are not incorp
rated into the present approach. Apart from oscillations
large distancesR the potentials decay exponentially. If inte
acting particles are of the same type (P15P25P), the force
between them is always attractive for small and mode
distances~Fig. 2!. The sign ofP is positive if the film thick-
ness is enlarged (u.0), just below an adsorbed convex pa
ticle, and negative if the thickness is diminished. Differe
particles with opposite sign ofP repel each other. The inter
action becomes stronger when the compression-expan
modulus decreases or the decay length for elastic defor
tions increases. However, there is a restriction in mate
optimizations for bilayers, since the characteristic dec
lengthj II for membrane thickness perturbations is expec
to be comparable to the bilayer thicknessd0 @1#. Similarly, in
-
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the case of large surface tensionss8 the corresponding char
acteristic lengthj I5As8/B8 should hardly exceed the bi
layer thickness. The characteristic lengthj5AK/B for
lamellar phases is comparable to the distance between a
cent lamellae @20#. In contrast to a bilayer, however
multilayer stacks offer the additional possibility to modi
the interaction radius of adsorbed colloidal molecules
changing the stack thicknessd. According to the results sum
marized in Table I the pair potentials decay exponentia
with a decay length proportional toAjd. It should be men-
tioned that the interaction range of inclusions embedd
within a smectic film also depends on the square root of
film thickness @11#. Obviously, utilizing the Langmuir-
Blodgett technique, the interaction radius can be contro
by varying the number of bilayers in the stack. Ifd@d0 , the
theory for adsorbed molecules is also applicable to integ
membrane proteins which span the upper bilayer of the fi
~Fig. 1!. In this case the parametersPi ( i 51 and 2! are
phenomenological constants which cannot be identified w
the force defined by Eq.~29!.

If the stack is moderately thick (Ajd@b) the range of the
substrate-mediated interaction is much larger than the h
core radiusb of the adsorbed molecules. In this case the v
der Waals equation~32! is applicable. The adsorbate aggr
gates if the attractive forces are sufficiently strong or if t
interaction radius is sufficiently large. In the present case
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increase of the interaction radius can induce the aggrega
Using Eqs.~32! and ~34!, the phase diagram in Fig. 3 i
evaluated by applying the conditionsP(c8)5P(c9) and
m(c8)5m(c9) for mechanical and chemical equilibria, re
spectively. The transition from a gaslike to a fluidlike sta
occurs if the stack thicknessd exceeds the critical valuedC
55.8D. Attractive forces have only little influence on th
freezing density of a hard disk fluid@25#. Crystalline order
with a triangular lattice is always stable for sufficiently hig
densities (c.0.67). Figure 3 suggests that the tw
dimensional fluid disappears ford/D.14, and the aggrega
tion of the gaslike phase immediately leads to a triangu
lattice.

A rough estimation of the magnitude of the characteris
thicknessD @Eq. ~33!# requires the forceP exerted by a
colloidal molecule. For peptides adsorbed on lipid bilaye
some information onP can be deduced from x-ray exper
ments@17#. These experiments revealed that peptides cau
thickness reduction of lipid bilayers. It was found for a b
layer surrounded by water (s.0) that just adjacent to a
peptide molecule the bilayer thickness is reduced by ab
0.2 nm @17#. On the other hand, a thickness reductionu(0)
5PGII

S (0) can be achieved by a point force with streng
P,0. Using Eq. ~12! and taking into account ImK0(0)

FIG. 3. In the phase diagram the reduced stack thicknes
plotted vs the density. If the thickness exceeds the critical va
dC55.8D, an equilibrium of gaslike and liquidlike states is stab
for moderate densities. For high densities hard disklike partic
form a two-dimensional crystal.
(

n.

r

c

,

a

ut

52p/4, we obtain u(0)52uPu/(8B8j II
2 )52uPu/

(8AB8K8) in accord with the result of Boulbitch@19#. Since
the decay length for thickness alterationsj II is comparable to
the bilayer thickness@20#, a possible choice isj II .1.2 nm
@17#. Choosing the valueB8.1.7310211N/nm3 @18# for a
dimyristoylphosphatidylcholine~DMPC! bilayer and u(0)
.20.2 nm, the forceP58u(0)B8j II

2 .23.9310211N is
estimated. We assume that a peptide exerts the same no
force P onto a bilayer stack. The approximate formulaB
5B8d0 yields the reasonable valueB55.1310211N/nm2

for the compression modulus of a lamellar phase. Finally,
a0.3 nm2 ~the cross section of an adsorbed peptide@17#!
and the temperatureT.300 K the critical thickness for ag
gregationdC55.8D.14 nm is found. In this case a film con
taining five bilayers would be sufficient to observe a pha
transition from a gaslike to a fluidlike state.

Membrane-mediated attractive forces can occur also
tween long molecules such as DNA. Recently Fang a
Yang @6# investigated DNA adsorbed on a supported lip
bilayer. Utilizing atomic force microscopy, they found o
dered domains of parallel DNA molecules with regular inte
axial spacing of about 5 nm, which is considerably low
than the length of the DNA. It was proposed that this d
tance results from the balance of repulsive electrost
forces and membrane-mediated attractive forces@6,7#. The
potentials summarized in Table I suggest that the attrac
force for parallel rods could be rather strong, sinceU(uxu) is
always proportional to the rodlengthL. However, further ex-
periments are necessary to explain the stability of these D
arrays.

In conclusion, the range of membrane-mediated forces
tween adsorbed colloidal molecules can be controlled
changing the number of layers in a Langmuir-Blodgett fil
The interaction radius is proportional to the square root
the stack thickness. This effect can lead to the aggregatio
the adsorbate if the number of layers exceeds a critical va
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APPENDIX A

The integral

G~x2 x̄,y2 ȳ,z!5
1

~2p!2 E E sinh@q2j~d1z!#exp@ iqx~x2 x̄!1 iqy~y2 ȳ!#

q2@jB cosh~q2jd!1s sinh~q2jd!#
dqydqz
the

is transformed by introducing polar coordinatesq
5Aqx

21qy
2,f). The integration over the polar anglef re-

sults in

G~R,z!5
1

2p E
0

` sinh@q2j~d1z!#J0~qR!

q2@jB cosh~q2jd!1s sinh~q2jd!#
q dq,
where R5A(x2 x̄)21(y2 ȳ)2, and J0(qR) is the Bessel
function of zero order. This function can be replaced by
Hankel function of zero order by applying Eq.~8!. Then the
integral is replaced by

G~R,z!5
1

4p E
2`

1` P~q,z!

Q~q!
dq,
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where

P~q,z!5
sinh@q2j~d1z!#

q
H0

~1!~qR!

and

Q~q!5jB cosh~q2jd!1s sinh~q2jd!.

Applying the method of residues, we obtain

G~R,z!52p i(
m

P~qm ,z!

4pQ8~qm!
,

where Q85dQ/dq, and the complex numbersqm localize
the poles in the upper half of the complex plane. The po
are evaluated from the equationQ(q)50, which has an in-
finite number of solutions. The squaresqm

2 obey the equation

qm
2 jd5S m1

1

2Dp i 2
1

2
lnF11s/~jB!

12s/~jB!G ,
wherem is an integer number. If the conditions/(jB)!1 is
satisfied, the logarithmic term can be neglected, and then
zeros ofQ(q), with Im q.0, are

qn
15 ibS ~n1 1

2 !p

jd
D 1/2

and qn
25 ib* S ~n1 1

2 !p

jd
D 1/2

,

where n50,1,2,3, . . . , b5(11 i )/&, and b* is the com-
plex conjugate ofb. Thus we obtain

G~R,z!52p i (
n50

` F P~qn
1 ,z!

4pQ8~qn
1!

1
P~qn

2 ,z!

4pQ8~qn
2!G .

Inserting the relations forqn
1 andqn

2 , the Green’s function
can be cast into the form

G~R,z!5
i

4Bj2d (
n50

`

~21!n sinFp~ 1
2 1n!~d1z!

d
G

3FH0
~1!~qn

1R!

~qn
1!2 1

H0
~1!~qn

2R!

~qn
2!2 G .

Finally, taking into account the relation between the Han
function and the modified Bessel function of the first ki
@16#, namely,H0

(1)(qn
1R)5(2/p i )K0(qn

1R/ i ), and the corre-
sponding formula forH0

(1)(qn
2R), we arrive at

G~R,z!52
1

p2Bj (
n50

`
1

n1 1
2

3cosFpz

d S n1
1

2D G Im K0S bA~n1 1
2 !pR

Ajd
D .

In a similar way, the Green’s function for rods
s

he

l

G~ uxu,z!5
2

~2p!3/2B S d

j D 1/2

(
n50

`
gn~ uxu!

S n1
1

2D 3/2

3cosFpz

d S n1
1

2D GexpF2
A~11 1

2 !puxu

A2jd
G ,

with

gn~ uxu!5cosSA~n1 1
2 !puxu

A2jd
D 1sinSA~n1 1

2 !puxu

A2jd
D

is obtained.

APPENDIX B

We consider an infinitely thick stack of layers filling th
half-space2`,z<0. In the case of long rods, the expre
sion

G~x2 x̄,z!5
1

2p E
2`

` exp„q2jz1 iq~x2 x̄!…

q2~jB1s!
dq

satisfies the required boundary condition

BS ]G

]z D
z50

2sDG~z50!5d~x2 x̄!.

Integration yields, straightforwardly,

G~x2 x̄,z!5
1

2~jB1s! F ux2 x̄uerfS x2 x̄

Ajuzu
D 1S juzu

p D 1/2

3expS 2
~x2 x̄!2

4juzu D G .

For z50 this result is simplified to

G~x2 x̄!5
ux2 x̄u

2~jB1s!
.

APPENDIX C

We consider an ensemble ofN globular hard particles
attached to a surface. If the attractive forces have a la
interaction radius, the free energy can be expressed as
sumFhs1F, whereFhs is the free energy of the hard-partic
reference system, and the second termF is allocated to the
attractive interaction @26#. Attractive substrate-mediate
forces result from the free energy contribution

F52 1
2 E G~ uX2X̄u! f ~X! f ~X̄!d2X d2X̄,

where f (X)5( i 51
N P(X2Xi). Using the relations

f ~X!5E P~X2X% !(
i 51

N

d~X% 2Xi !d
2X% ,
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f ~X̄!5E P~X̄2 X̄̄
¯

!(
i 51

N

d~ X̄̄
¯

2Xi !d
2X̄̄
¯

,

the elastic free energy can be rewritten as

F52 1
2 E d2X% d2X̄̄

¯
Ĝ~ uX% 2 X̄̄

¯u!(
i , j

d~X% 2Xi !d~ X̄̄
¯

2Xj !,

with

Ĝ~ uX% 2 X̄̄
¯u!5E d2X d2X̄P~X2X% !G~ uX2X̄u!P~X̄2 X̄̄

¯
!.

Averaging over a statistical ensemble, we obtain

F52 1
2 E Ĝ~ uX2X̄u!^r~X!r~X̄!&d2Xd2X̄,

where

^r~X!r~X̄!&5K (
i , j

d~X2Xi !d~X̄2Xj !L
s
-

r,

J

.

J

is the density correlation function. For the limituX2X̄u
→`, or more precisely, ifuX2X̄u is considerably larger than
the hard core radius of the particles, the pair correlation fu
tion can be written aŝr(X)r(X̄)&5^r(X)&^r(X̄)&5r2 if
the system is homogeneous. Furthermore, for large value
uX2X̄u, the replacementĜ(uX2X̄u)→P2G(uX2X̄u) is also
justified. The resulting elastic free energy

F52
NP2r

2 E
0

`

G~R!2pR dR

is accompanied by the pressure contribution

DP5
r2

N
]F/]r52

P2r2

2 E
0

`

G~R!2pR dR,

in accord with the corresponding term in Eq.~30!.
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