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Indirect interaction of colloidal particles adsorbed on smectic films
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Colloidal particles like peptides and proteins adsorbed on a stack of lipid bilayers cause elastic deformations
which disturb the smectic order. Two adsorbed particles attract each other due to the superposition of their
deformation fields. The effective pair potential attributed to this substrate-mediated force decays exponentially
with the particle distance. The range of this potential coincides with the decay length of elastic deformations,
and is found to be proportional to the square root of the stack thickness. If the stack is sufficiently thick, the
substrate-mediated interaction is estimated to be strong enough to overcome the entropic barrier and enforce
aggregation or even crystallization of the adsorbate.

PACS numbes): 68.18+p, 68.10.Et, 82.70.Dd

[. INTRODUCTION on the lipid-water interface of such films. Lipid-mediated
interactions are expected to be dependent on the number of

A cell membrane is a lipid bilayer which contains a vari- layers in the smectic film. Changing the number of bilayers
ety of polymeric inclusions such as integral protefifig In in Langmuir-Blodgett films could be a possible means to
addition to the embedded transmembrane patrticles, there apeodify the order of adsorbates consisting of colloidal mol-
also amphipathic peptides and proteins adsorbed on tHecules.
membrane surface. The lateral ordering of these molecules In this paper we investigate how the stack thickness influ-
can influence their biological activity. There exist substantialences the indirect interaction between the colloidal particles.
interactions between protein molecules embedded in biologil addition to stacks of a moderate thickness, very thin films
cal membranes. In protein-rich systems, the interplay of varionly consisting of one bilayer resting on a solid support are
ous intermolecular forces can result in phase separations &s0 considered. The results for very thin films and stacks
well as in two-dimensional crystallizatiof2]. A practical  differ in the interaction range. It will be shown that the range
situation in which these interactions are important is theof the membrane-mediated attraction force grows with an

crystallization of membrane proteins for electron microscopyncreasing number of bilayers in a stack. The effective inter-
and x-ray diffraction studief3]. action radius is found to be proportional to the square root of

Theoretical [4] and experimenta| investigatior[g] re- the stack thickness. In SUfﬁCiently thick films the interaction
vealed that embedded proteins interact indirectly via deforfange could be large enough to overcome the entropic barrier
mations of the lipid bilayer. Each inclusion is the source ofand enforce aggregation or even crystallization of the adsor-
elastic membrane deformations, which extend over distancdte. Provided that the distances between the particles are
substantially larger than the cross section diameter of a lipidnuch larger than their diameters, the theoretical approach is
molecule. Superposition of the deformation fields producedlso applicable if the upper bilayer of the Langmuir-Blodgett
indirect forces between the macromolecules. The strength dim contains membrane-spanning prote{fgg. 1).
these forces depends on the elastic properties of the lipid
bilayer. Elastic deformations have also been suggested to Il. ELASTIC DEFORMATIONS OF A VERY THIN
give rise to attractive forces between parallel DNA mol- SUPPORTED FILM
ecules adsorbed on cationic lipid bilay¢és7]. Furthermore,

indirect forces between inclusions, which are incorporated L€t us consider a large colloidal particle adsorbed on the

into the bulk of a smectic liquid crystal, should also occur_sun‘ace of a very thin soft film which rests on a solid support.

Comprehensive theoretical studies of Turner and co-workersh€ film thicknessd, is assumed to be comparable to or
[8—11] dealt with the interaction between inclusions residing€Ven substantially smaller than the cross-sectional diameter

in the interior of lamellar phases consisting of regularly

spaced lipid bilayers or diblock copolymers. The effective EZZ R
pair potential for two inclusions was found to be attractive
on average, and strongly anisotropic. Rather complicated ef-

fective pair potentials result if higher order terms of a mul- —_— T

tipole expansion for the interaction potential are taken into d —-—

account 10]. -
Electron microscopy{12], scanning tunneling13], and

atomic force microscopy14,6] offer excellent possibilities 4|

to study lipid bilayers and multilayers. The familiar

Langmuir-Blodgett technology is suitable to transfer stacks FIG. 1. Colloidal molecules adsorbed on a stack of bilayers
with a few or even several dozen lipid layers to a plane solichroduce a disturbance of the flat interface profile. Integral proteins
support. We suppose that proteins or peptides are adsorbepanning the upper bilayer have the same effect.
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of the adsorbed patrticle. Forces which attach the colloid to o

the substrate are the source of elastic deformations accompa- K'=— 54 s'Cuy(s)2ms ds
nied by the change of the film surface profile. Deviatians 0

of the film th|ckness_ from the unp_erturbed f_Iat state are &Xith s=|g= \/§%+_Szz Performing several partial integra-
pressed as a function of Cartesian coordinates(x,y), tions, the elastic free enerd{) can be cast into the form
which are introduced in such a way that a point of the film ’

surface is defined by the position vectdx,y,z=d,

+u(x,y)]. The free elastic enerdy of a thin film should be F[u]z%f [B’(U(X))?+ o' (Vu(X))?+ K’ (Au(X))?
a functional of the surface profile(X). If film deformations
are small|u(X)|<do], a functional Taylor expansion about —2 f(X)u(X)]d?X. 3
the flat configuration[u(X)=0] is justified. Neglecting
higher order terms, we obtain Equation (3) has the same mathematical structure as a
well-known free energy expression used in the elastic con-
_ _ ) tinuum theory of lipid membraneg15]. B’ is the
F[u]—F[u—0]+f Cu(X)u(X)d"X compression-expansion modulug, the surface tension, and
K’ the bending modulus. The stability of the flat film geom-
+%f f Cuu(|X—Y|)u(X)u(Y)d2X X4 etry in the force—fre(-_z State rgquiré§>p, o’'=0 andK’
>0. The corresponding Eulerian equation
1)

K'AAU(X)— o' Au(X)+B'u(X)=f(X) (4

where the notation for functional derivatives, . - -
is a condition necessary for a minimum of the free energy. It

is useful to evaluate the Green’s function by solving the

oF -
Cu(X)= equation
Su(X) 0 _ _ _
K'AAG(|X—X|)— o’ AG(|X—X|)+B'G(|X—X|)
and _
= o(X=X), (5)
2

Cuu(IX—XI)Z(m) , wheres(X—X) is the Diracsfunction.G(|X—X]) describes
uX)SuX) /g the film response to a force applied at the po{ntThen the

interface profile for any force distribution is obtained from

is used. In the force-free state the flat configuraticiX) the convolution integral

=0 is stable, and thus the first derivati@,(X) must be

equal to zero. If the film is subjected to an external load, o

Cu(X)=—f(X) is the stress normal to the film surface. For U(X):J G(|IX=X])f(X)d?X. (6)
deformations with small wave numbes<2#/d,, a gradi-

ent expansion is allowed. SubstitutiXgwith S=X—X, and  The Green’s function is evaluated by applying the two-
expanding abous= 0, the second integral in E¢l) is trans-  dimensional Fourier transform. Inserting

formed into

1 -
_ G(X—Y,y—V)=(zT)zf f G(ax.qy)exdigy(x—x)
ff Cuu(IShu(X)u(X+ S)d2X d?x

+igqy(y—y)lda.day,

:f u(X)[B'u(X)= o' V2u(X)+K'VAu(X)1d*X,  and the corresponding ansatz for the Di@éunction into
Eq. (5), we arrive at[K'q*+o'g?+B’]G(q)=1, where
(2 .
q= x/qx2+ qyz. If ¢’ >0 the termKq® can be neglected when

where gradient terms with higher order than four are Neiarge distances or small wave numbers \/o'/K are con-

_\v2_ 42 2 . -
glecte'd, and}—V = a5+ 3y anoteg the Laplape operator in sidered, and thus the simpler equatfar! g2+ B]G,(q) =1
two dimensions. The coefficients in expansi@ are for-

mally defined as results. The inverse Fourier transform®f(q) can be writ-

ten as a Hankel transform, namely,

= Jo(qR)q dq

B’ =j Cuu(s)2ms ds
0

GI(R)ZZWB, JO 1+§|2q2 1 (7)

1 (= h the notation R=\(x—x)2+ (v—v)2 and ¢

'=—= | $2Cyy(s)2msd where (x=X)*+(y—y) |
7 4 fo SCuls)2ms ds =c’'/B’ is used, andy(gR) is the Bessel function of the

first kind. The formula 2,(qR)=H{"(qR) + H?)(qR) con-
and nects the Bessel function to Hankel functions of first and
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second orders, and taking into account the relation

2 1 . . . S 1 gll 2 R R
HP(qR)=—H{M(—qgR), which is valid for real values of Gi(R)=—=——|&| hl5|exd —
the argumentiR we obtain 4B’ & &1v2 &iv2 3
(1) _HW
Jo(qR) = Hg (AR —Hg'(—aR) (8) is applicable, where the trigonometric functibris defined
2 ' by
Inserting Eq.(8) into Eqg. (7) yields the integral h(x)=(V1—1n2)cogXx)+ (V1+1M2)sin(x). (14)
< 1 (= H{"(qR)qdq Finally, we consider the case where a long rodlike mol-
Gr(R)= A7B' fo 1+§,2q2 ' 9 ecule is adsorbed on the film surface. The Green’s function

for a long rod with an orientation parallel to theaxis is
which can be replaced by the sum of the residues attributeabtalned from the integral

to the poles located in the upper half of the plane of complex 1 = expliq)dg
numbersq=Req+ilmqg. The denominator in integral9) GR(R)= ,f X2 > ay
has the zera=i¢, * located in the upper half-plane. Thus 2mB" J_ 1+

we obtain the result . . .
which leads to the exponential function

2 HY(IR/E)
Sy — 1 x|
CrR=Zme 288 Gl(X)= 57z @ "(_E) (15
which is simplified to Similarly, in the case of a negligible surface tensioh
<B'¢#?, we obtain
GY(R)= ;K (E) (10)
! 27B'& 0l g . x| (Xl
Gh(|x))= iy co 2 +sin 2
by using the relatior} 7iH {P(iR/ &) =Ko(R/¢;), whereK, gl dl i
is the modified Bessel functidi6]. If Ris comparable to or ||
larger than¢, the formula xXexp — §_1/? (16)
1
1/2
SRt (& _R 17  Obviously, the validity of Eqs(10), (12), (15), and (16) is
r(R) > X (13) ; - ; . g
2\27B' &\ R & not restricted to smectic bilayer films. Since expansi@ns

and (2) are applicable to any thin soft films, the results
is applicable. It is often assumed that the surface tension should also be valid for other materials, e.g., thin films of
of lipid bilayers vanishes. The Green’s function is modifiedsoft solids, if small wave number deformationsy (
if the interface tensiorr’ is very small or zero, because in <2w/d,) are considered.
this case the terf{q* must be taken into account. Then Eq.
(9) is replaced by I1Il. COLLOIDAL PARTICLES ADSORBED
ON A STACK OF BILAYERS

= HY(qR)q dq

—_— A. Deformation of a bilayer stack
- 1+ &9

S(R)=
G|| ( R) - ZB/
Let us consider a stack of smectic layers or bilayers rest-
ing on a solid surface identical to the planey,z= —d) of
a Cartesian coordinate system. Now the shiftf smectic
bilayers depends on the additional coordinateColloidal
particles adsorbed on the surfaceQ exert a force which is
the source of elastic deformatiofBig. 1). The loadf(x,y)
is nonzero only in the small regions where colloidal particles

. ] ) touch the surface. The elastic free energy of the stack can be
whereg=(1+i)/v2, andg* is the complex conjugate . \yritten as[20]

This expression is transformed into

with &,=(K'/B’)Y* and again applying the residue method
we arrive at

Y A L <1>(iB_R i <1>(i'8*R
GII(R)_ A47B’ [4§|2| HO 5” H ’

- ag, 0\ g,

1( 4 au\? A ,
s BR F=§fvd XB| | +K(vZu) +§JAd X o(VU)
G”(R)__Z’JTB,§|2| Im Ko(g_”> (12)
_ 2
Equation(12) was already derived by Boulbitdi9] for de- fAd Xtu, 17

scribing the deflection of a biological cell membrane under
application of a local force. If the distanéis not too small whereV is the volume,A the surface area, and the coeffi-
compared tc), the formula cients B, K, and o are the compression modulus, bending
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modulus, and surface tension, respectively. We assume tha 1
the thicknessl of the stack is small compared to its lateral  cU(r) o4
extension. Variation of the free enerd¥q. (17)] leads
straightforwardly to the Eulerian equation
) -0.1-
—_—KA2
72 KA“u, (18
-0.24
with boundary conditions for the adsorption plare0 and
the lower planez= —d, where the multilayered stack rests
on the solid support: 031
au 0.0 05 10 15 2.0 25
B 7 —oAu(z=0)=f(x,y), (19 r
=0 FIG. 2. Plot of the substrate-mediated pair poteriildimen-
u(z=—d)=0 (20) sionless units cU with c=B¢/P?, vs the reduced distance

Performing some partial integrations and taking &) into
account, the free enerdil7) is transformed into

1 1 Jdu
F=——fd3Xu +—fd2XuB—
2 )y 2 Ja 0z 7=0

—oAu(z=0)

B u KA?2
Fra u

—f d?X fu,
A

and using Eqs(18) and(19), we arrive at the simple expres-

sion

Fz—%deXfu. (21)

=R//&d. The solid line results from the complete Green’s function
(23), while the dashed line is obtained from the approximate for-
mula (24).

sinj q2&(d+2)]
g°[ éB cost{q?éd) + o sinh(g?éd) ]’

Gq(z):

with £=\K/B, satisfies the required boundary conditions. If
the conditiona/(£(B)<<1 holds, the surface tension is not
important. Then the Green'’s function

2“’: 1 K(,B\/(nJr%)TrR)
m
LU Ve

G(R):_ W28§n=0 n+

(23

To characterize the elastic response it is sufficient to solvés obtained for z=0 (see Appendix A where R

the Eulerian equatioil8) for the Green'’s functiom= G(x
—X,y—Y,z), with boundary conditions

B( E) — 0AG(z=0)=8(x—X) 8(y—Yy),
izl _,

G(x—x,y—y,z=—d)=0.

Inserting the Fourier transform

— 1 .
G(x—x,y—y,z)=(27)2ffeq<z>exp[nqx<x—ii
+iqy(y_W]dqxdqy
into Eq. (18) yields

d?Gy4(2)
B2

—Kg*G4(2)=0, (22

Whereq2=(q§+ qf,). The boundary conditions for the func-

tion G4(2) are

dGq4(2)
B( dz

+00°G4(0)=1 and Gy(z=-d)=0
0

7=

Obviously, the solution of Eq22),

= J(x=X)%+(y—y)? and 8= (1+i)/v2. For R>/&d only
the first term of sum(23) has a substantial contribution
(compare Fig. 2 Taking into account the asymptotic behav-
ior of the Bessel functioi, [16] for R—«, one obtains the
formula

(277_)1/4
B¢

1 1 1/2 1
G(r)= h(i\/;r)<F> ex —E\/;r), (24
where the scaled argumentR/+/&d is used, and the func-
tion h is defined by Eq.14). The decay length/éd for
perturbations of the flat surface profile increases with in-

creasing film thicknesd.

B. Substrate-mediated interaction
The Green’s function allows one to determine an effective

interaction potential for substrate-mediated forces between
adsorbed molecules. Combining the relation

u(X)=f G(|X—X])f(X)d?X
with Eq. (21) yields the simple formula

F:—%ffG<|X—Y|>f<X>f<Y>dZXdZY, (25)
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which is also applicable to very thin fims considered in Sec. Finally, the case of an infinitely thick smectic stack,
[Il A. Let us consider two colloidal particles with coordinates which fills the half-space—x<z<0, is discussed. The
X; and X,. Both particles produce a stress normal to theGreen's function for rodsG(|x—Xx[)=3|x—X|/(¢B+ o),
surface, which is different from zero in the regions where thesevaluated in Appendix B, does not decay for large distances
molecules touch the interface, say within the regidKs (]x—X]—=). The same problem arises for the correspond-
—X4|<a; and |[X—X,|<a,. Thus we can writef(X) ing Green'’s function attributed to a point force exerted to the
=P, (|X—=Xq|) + P,(|X—=X5]), where the function®;(|X|)  surface of an infinitely thick stack. This behavior is not sur-
differ from zero only within small circular region| <a; prising, since even thermodynamic fluctuations destroy the
(i=1 and 2. Inserting this expression fdi(X) into Eq.(25) one-dimensional order of an infinitely extended lamellar
leads to phas€ 20].

F=1U(X1,X1)+3U(Xp,X5) +U(X1,Xy), (26) C. Statistics for an ensemble of adsorbed particles

We consider a two-dimensional systemNohard particles
with interaction potential

u(X, ,Z>=—ffG<|xi—Z—l)Pi(|xi|)Pj<|Y,-|>d2xid2Y; WO, X = 3 w(lXi=Xi],
si<js=

oy
- . . ._where the pair potential w(|X; —X;|)=w"(|X;—X;|)
(i,j=1,2). We consider the case of a sufficiently large dis +U(|Xi—XJ—|) consists of a hard-particle contribution and

tance|X,—X;|>ay ,a, between the adsorbed molecules andg attractive term defined by E@8). In the case of disklike

fix their position vectorsX; and X,. Then the function molecules, the hard-particle contribution is defined by
G((X;+AX)— (X;+AX))) of the argumenta\ X; andAX;  W™(|X;—X;)=2 for [X;—X;|<2b and w"(|X;—X;|)=0
(i,j_= 1,2) does not noticeably vary ifAX,|<a; gnd for |Xi—X]-|>2b, whereb is the disk radius. van Kampen
|AX,|<a,. The self-energiesU(X,X;) and 3U(X,,X,) [22] and Lebowitz and Penro$23] proved that the pressure
in Eq. (26) can be omitted when the interaction energy of Il of a fluid with hard-particle repulsion and long-range at-
adsorbed molecules is evaluated. Using the notatiofractive forces satisfies the van der Waals-like equation of

U(X;,X2)=U(R) with R=|X,—X,| the effective interac- State

where

tion potential =TI+ L o2 (30)
U(R)=—P;P,G(R), 28 with
with o
a=f U(R)27R dR
a; 0
Pi=f Pi(s)2msds (i=1,2 (29 ) ) )
0 whereII" is the pressure of the hard-particle reference fluid

. . _ _ with vanishing attractive interactiong £ N/A is the particle
is obtained from Eq(27). Equation(28) can be considered density,k is the Boltzmann constant, afidis the tempera-

as the leading term of a multipole expansion analogous to fure). Combining the relationd (R)=—P?G(R) and Eq.
corresponding expansion for inclusions localized in the bulk23), the coefficientx is easily computed:

[10]. This term accurately describes the interactioR# a;

(i=1 and 2, and if the adsorption forc®; is substantially e 2
larger than correction terms associated with moments of the a=—-P 0 G(R)2mR dR=— B d. (31)
force distributionP;(s). The second condition can be written
as A different way to derive Egs(30) and (31) is given in
Appendix C. Using an accurate equation of state for the hard
|Pi|(\/§—d)“> f S"P.(s)27s d% (N=2.46...) core contributionl1"P [24], Eq. (30) can be written as
0
Hao B lﬂ 2 d ) 32)
for a substrate consisting of smectic layg24]. KT (1—¢)° D)’ (

In a similar way the interaction energy for two parallel
rods with lengthL is found by introducing coupling con- Where

stantsP; (i=1 and 2, which are equal to the forces per unit
rod length normal to the interface. It is supposed that the D=
mutual distancex| between parallel rods is small compared

to the rod lengthL. In this case the potential([X|]) s 4 characteristic stack thickness, and the dimensionless den-
= —P1P,G(|x]) is defined as the interaction energy per unitsity y=Na, /A is equal to the fraction of substrate area cov-
rod length, and thus the total interaction energy of two parered by adsorbed particleagd= 7b?, the area of a disk The

allel rods with lengthL is given byU(|x])=LU(|x]|). equation of stat¢32) is related to the chemical potential

—— 33)

2a,B kT)
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TABLE I. Interaction potentials of circularly symmetric particles and long parallel rods for large distances
R>&d and|x|>\/§—d. (The rod lengthL is supposed to be much larger than the interaxial distatige

Supported bilayer withr#0
globes

—rer
R=" e R g

parallel rods

P,P,L X
U(x)=— —215,'; exp(— %')

Supported bilayer witlr=0

globes
( 5“ ) 1/2 % R )
— X —_——
Rl TN v

PP ( R
4mB' &\ &iv2
parallel rods
it 2
cod —— |+sinl—— | lexp ———
gll‘/2 fll‘/i fll‘/i

Stack of bilayers
globes

(2m'P,P, (1 1\ 1
g ot 7] ed 5]

parallel rods

cos(% \/;rl) +sin(; ﬁrl)

UR)

P.P,L

U _—
(= e

exr{—;\/;rl)

BEAE 2|51|52L(d)1’2
U\ T R e

W (1+—¢?) the case of large surface tensian'sthe corresponding char-
In 1_¢+ 1-)? 2(5) 14 (34 acteristic lengthé, = Jo'/B’ should hardly exceed the bi-
layer thickness. The characteristic length= K/B for
lamellar phases is comparable to the distance between adja-
cent lamellae[20]. In contrast to a bilayer, however,

The effective pair potentials resulting from the substrate-multilayer stacks offer the additional possibility to modify
mediated interaction for circularly symmetric particles the interaction radius of adsorbed colloidal molecules by
(“globes”) and parallel rods are summarized in Table |.changing the stack thicknedsAccording to the results sum-
These results, based on the linear theory of elasticity, argarized in Table | the pair potentials decay exponentially
restricted to the case of small film deformations. Furtherwith a decay length proportional tgéd. It should be men-
more, for very thick stacks the substrate-induced interactiotioned that the interaction range of inclusions embedded
is modified by thermal fluctuations, which are not incorpo-within a smectic film also depends on the square root of the
rated into the present approach. Apart from oscillations foffilm thickness [11]. Obviously, utilizing the Langmuir-
large distanceR the potentials decay exponentially. If inter- Blodgett technique, the interaction radius can be controlled
acting particles are of the same tyge,&P,=P), the force by varying the number of bilayers in the stackdk-d,, the
between them is always attractive for small and moderatéheory for adsorbed molecules is also applicable to integral
distancegFig. 2). The sign ofP is positive if the film thick- membrane proteins which span the upper bilayer of the film
ness is enlargedut>0), just below an adsorbed convex par- (Fig. 1). In this case the parameteR5 (i=1 and 3 are
ticle, and negative if the thickness is diminished. Differentphenomenological constants which cannot be identified with
particles with opposite sign d® repel each other. The inter- the force defined by Eq29).
action becomes stronger when the compression-expansion If the stack is moderately thick({£d>b) the range of the
modulus decreases or the decay length for elastic deforma&ubstrate-mediated interaction is much larger than the hard
tions increases. However, there is a restriction in materiatore radius of the adsorbed molecules. In this case the van
optimizations for bilayers, since the characteristic decayder Waals equatiof32) is applicable. The adsorbate aggre-
length &, for membrane thickness perturbations is expectedjates if the attractive forces are sufficiently strong or if the
to be comparable to the bilayer thicknekgd 1]. Similarly, in  interaction radius is sufficiently large. In the present case the

u=KkT

IV. DISCUSSION
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=—ml4, we obtain u(0)=—|P|/(8B'&)=—|P|/
(8yB’K") in accord with the result of BoulbitcHL9]. Since
the decay length for thickness alteratigisis comparable to
the bilayer thicknes$20], a possible choice ig;;=1.2nm
triangular [17]. Choosing the valu®’'=1.7x10 *N/nm® [18] for a
lattice dimyristoylphosphatidylcholing DMPC) bilayer and u(0)
=—0.2nm, the forceP=8u(0)B’¢£5=—3.9x10 N is
estimated. We assume that a peptide exerts the same normal
force P onto a bilayer stack. The approximate formiBa
=B'd, yields the reasonable valug=5.1x10" N/nn?
for the compression modulus of a lamellar phase. Finally, for
00 o2 04 . 06 08 10 ap=3 nnt (the cross section of an adsorbed pepfiti&])
and the temperatur€=300K the critical thickness for ag-
FIG. 3. In the phase diagram the reduced stack thickness igregationdc=>5.8D=14 nm is found. In this case a film con-
plotted vs the density. If the thickness exceeds the critical valudaining five bilayers would be sufficient to observe a phase
dc=5.8D, an equilibrium of gaslike and liquidlike states is stable transition from a gaslike to a fluidlike state.
for moderate densities. For high densities hard disklike particles Membrane-mediated attractive forces can occur also be-
form a two-dimensional crystal. tween long molecules such as DNA. Recently Fang and
Yang [6] investigated DNA adsorbed on a supported lipid
Bilayer. Utilizing atomic force microscopy, they found or-
ered domains of parallel DNA molecules with regular inter-
axial spacing of about 5 nm, which is considerably lower
than the length of the DNA. It was proposed that this dis-
tance results from the balance of repulsive electrostatic
forces and membrane-mediated attractive fol&g]. The
potentials summarized in Table | suggest that the attraction
force for parallel rods could be rather strong, sikb@x|) is
h always proportional to the rodlength However, further ex-
periments are necessary to explain the stability of these DNA

two disordered phases

increase of the interaction radius can induce the aggregatio
Using Egs.(32) and (34), the phase diagram in Fig. 3 is
evaluated by applying the conditiod$(«')=1II(y") and
wn(y')=u(y") for mechanical and chemical equilibria, re-
spectively. The transition from a gaslike to a fluidlike state
occurs if the stack thicknegbexceeds the critical value.
=5.8D. Attractive forces have only little influence on the
freezing density of a hard disk flui®5]. Crystalline order
with a triangular lattice is always stable for sufficiently hig
densities (/>0.67). Figure 3 suggests that the two-
dimensional fluid disappears fofD>14, and the aggrega- arrays.

tion of the gaslike phase immediately leads to a triangula{ In conclusion, the range of membrane-mediated forces be-
lattice. ween adsorbed colloidal molecules can be controlled by

A rough estimation of the magnitude of the characteristi changing the number of layers in a Langmuir-Blodgett film.
thicknessD [Eq. (33)] requires the force® exerted by a CThe interaction radius is proportional to the square root of
colloidal molec%le. For pgptides adsorbed on lipid bilyr;\yersthe stack thick_ness. This effect can lead to the agg_r_egation of
some information orP can be deduced from x-ray experi- the adsorbate if the number of layers exceeds a critical value.

ments[17]. These experiments revealed that peptides cause a
thickness reduction of lipid bilayers. It was found for a bi-
layer surrounded by waterof=0) that just adjacent to a The author thanks A. Kder, S. May, and H.-J. NMgel
peptide molecule the bilayer thickness is reduced by aboutru Freiberg for useful discussions. Financial support of the
0.2 nm[17]. On the other hand, a thickness reductigi®)  Sonderforschungsbereich 197 and the Fonds der Chemischen
=PG;(0) can be achieved by a point force with strengthindustrie is gratefully acknowledged.

P<0. Using Eqg.(12) and taking into account Iidy(0)
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APPENDIX A

The integral

Sy = 2 ffsinf[qu(dﬂ)]exr[iqx(x—YHiqy(y—V)]
(X=XY=Y.2)= (5 o[ €B costq?éd) + o Sin(q?éd) |

da,da,

is transformed by introducing polar coordinatesy ( where R= \/(X_y)2+(y_y)2, and Jo(gR) is the Bessel

= /q§+qz,¢)_ The integration over the polar anglere-  function of zero order. This function can be replaced by the

sultsin Hankel function of zero order by applying E@). Then the
integral is replaced by

1 J'w sin g?&(d+2)]Jo(qR) 1 (+=P(q,2)

CR2= 57 |, 2B costo?éd) + o sinngZza)] 4% CRA=%z) . Q) %%
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where 2 d\"2S gn(Ix)
e M= s\ & 1
pPla.= T E  ypigR) n*3
and Tz 1) V(1+3)7|x|
X Cco F n+§ ex —ng,
Q(q)=£B coshg®éd) + o sinh(g?&d).
with
Applying the method of residues, we obtain
B COS( W“%)“'X')ﬂm( Vin+ 17X
o~ PlAm.2) VTR T 2ed - \2ed
G(R,z)—2m§m: m, 3 3
is obtained.

where Q'=dQ/dg, and the complex numbexg, localize
the poles in the upper half of the complex plane. The poles APPENDIX B
are evaluated from the equati€q)=0, which has an in-

finite number of solutions. The squan¢$ obey the equation We consider an infinitely thick stack of layers filling the

half-space—«<z=<0. In the case of long rods, the expres-

ion
- 1 SIO
ml— =In

L
mT3 2

Onéd=| m+ 3

1+ o/ (£B)
1—0/(55)}' _ 1 (= exp(g®éz+iq(x—X))
SO o | T @)

wheremis an integer number. If the conditiar/ (éB) <1 is
satisfied, the logarithmic term can be neglected, and then the,si«fies the required boundary condition
zeros ofQ(q), with Img>0, are

G
. .ﬁ((n+%>w)”2 i ois (n+%)77)1/2 B(—) —oAG(z=0)=5(xX).
Un =10\ —2q— and q,=ig*| ———| . 2=

0z
&d &d

wheren=0,1,2,3..., 8=(1+i)/v2, and 8* is the com-

Integration yields, straightforwardly,

lex conjugate of3. Thus we obtain 1 X—X z|\1?
plex conjugate ofs C(X~%2)= 5 Ix—ﬂerf(f Hﬂ)
. . - 2(éB+0) £7| T
' =4mT ’ ’ - . —
n-o | 4mQ (qu) 4mQ (qn) XGX4——(X ﬂ .
4¢(z|
Inserting the relations fog, andq, , the Green’s function
can be cast into the form For z=0 this result is simplified to
. 0 X_ﬂ
i m(3+n)(d+2) G(x—§)=|—
- _ N aj - "
G(R,z)—4B§2anO( 1) sw{ 5 2(éB+0)
APPENDIX C

[HE)l)(q:R) ) HY (g, R)
(ay)? (an)?

We consider an ensemble &f globular hard particles
attached to a surface. If the attractive forces have a large
Finally, taking into account the relation between the Hankelnteraction radius, the free energy can be expressed as the
function and the modified Bessel function of the first kind sumF"s+ F, whereF"is the free energy of the hard-particle
[16], namely,H{" (gt R) = (2/7i)K(q, R/i), and the corre-  reference system, and the second téfris allocated to the
sponding formula foanl)(q; R), we arrive at attractive interaction[26]. Attractive substrate-mediated
forces result from the free energy contribution

1 1
G(R2)=~— Wngnzo il F:_%f G(IX=XDF(X)f(X)d2X d?X,
f{772 1 (B\/(n"'%)WR) wheref(X)==N ,P(X—X;). Using the relations
Xcog— | n+ = | [ImKy| —————1.
di’ 2 Véd N

- | 100= [ PR3, ok x)0%,
In a similar way, the Green'’s function for rods i=1
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=N = =
f(Y)zf P(Y—Y)i; S(X—X;)d?X,

the elastic free energy can be rewritten as

J

F=—1| d®Xd?>XG(|X-X|) 2, 5(>?—xi)5(§—xj),
1)

with

G(IX—X]|

)=f d2X d?XP(X—X)G(|X—X|)P(X—X).
Averaging over a statistical ensemble, we obtain

F

—3 f G(IX=X){p(X)p(X))d*Xd?X,

where

<p<X>p<Y>>=<i2j S(X—X;) 8(X—X;)
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is the density correlation function. For the Iinii)(—ﬂ

—o0, OF more precisely, ifx—ﬂ is considerably larger than
the hard core radius of the particles, the pair correlation func-
tion can be written agp(X)p(X))=(p(X))(p(X))=p? if

the system is homogeneous. Furthermore, for large values of
|X—X]|, the replacemen®(|X—X|)— P2G(|X—X]) is also
justified. The resulting elastic free energy

NP?p
2

f G(R)27R dR
0

is accompanied by the pressure contribution

2 2 2

p P
WﬁF/é‘p— >

ATl FG(R)sz dR

0

in accord with the corresponding term in EGQ).
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